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We study the possibility of representing the kinematical variables of a free
particle in terms of scale factors and integers. The action of a set of transforma-
tions from the Lorentz group parametrized by integers on this system of variables
are investigated, and it is shown that one can effectively characterize these
symmetries on a lattice in this way. By taking the scales sufficiently small, one
can arbitrarily closely approach the continuous case.

1. INTRODUCTION

The introduction of a discrete space-time lattice has been useful in the
study of quantum gauge field theory. The question of the realization of the
continuous symmetries on the lattice, such as the Lorentz group, and
the passage to the continuous limit has not yet been completely worked out.

In this paper it is shown that the continuous symmetry group of a free
relativistic particle can be approximated on a discrete lattice in such a way
that the main features of the group structure are maintained and the discrete
realization approaches the original continuous group in the limit that the
lattice approaches the continuum.

This is done by extracting a scale and integer coefficients from the
physical coordinate and momentum and specifying the transformation
properties of these factors.

We have shown that only in the simplest case, the one-dimensional
nonrelativistic Galilean group, can one perform a discretization of the
values of momentum and position of the free particle, assuming that the
corresponding scale factors stay unchanged under transformations from one
admissible classical Galilean frame to another.
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To treat successfully the cases of two-dimensional Lorentz transforma-
tions and two-dimensional rotations we introduce transformations of the
scales in a definite way.

In this way we select a discrete set of admissible states and a discrete
set of admissible transformations that are parametrized by integer parame-
ters in such a manner that in the limit of small scale parameters we can
arbitrarily closely approach the continuous case. This procedure can be
extended to the four-dimensional Minkowski space.

The paper 1s organized as follows: In Section 2 we consider a one-
dimensional nonrelativistic free particle motion and perform a discretization
of the values of kinematical variables. This can be done maintaining the
scale factors as invariants of the transformations.

We devote Section 3 to the case of two-dimensional Lorentz trans-
formations and its discretization. This is done by allowing the scale fac-
tors to transform under Lorentz transformations. We show that proposed
discretization procedure coincides with that considered in Section 2 in the
nonrelativistic limit. As a technical result of this section we mention the
decomposition of the two-dimensional Lorentz transformations into a prod-
uct of two transformations, each of which forms a group with the usual
relativistic law of velocity composition.

In Section 4 we consider a discretization procedure in the case of
two-dimensional relativistic free particle motion parametrized by a proper
time.

In Section 5, we study the discretization procedure for the compact
two-dimensional rotation group in a way similar to the treatment of
noncompact Lorentz transformations in Section 2.

And finally in Section 6 we study the general case of the discretization
procedure for the O(3.1) Lorentz group.

2. DISCRETIZATION OF THE CLASSICAL ONE-DIMENSIONAL
GALILEAN FREE PARTICLE MOTION

Let us first consider a classical Galilean free-particle motion taking
place along the x axis of a fixed reference frame L,. If now v is the velocity
of the particle relative to this frame then the momentum p, and the energy
E, of this particle in this frame are given by

Po= MUO ’ EO M (1)
where M is the mass of the particle.

We suppose further that at a moment ¢, the position of the particle in
this frame L, was x,. If now 7 is a “proper time” parametrizing the free
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motion of the particle then we can talk about the initial position in
four-dimensional phase space of a particle at a moment 7 =0:
(Ey. po. Xg- 1y). At the arbitrary moment 7 the position of the particle in
phase space is ( E(1), p(7). x(7), 1()). where

E(1)=E,, p(7)=p, (2a)
and
: _ Po _
.\(T)—x0+ﬁ7, (r)=t,+7 (2b)

Let us consider now an arbitrary reference frame L moving with a
velocity v relative to L, along the x axis direction common to both L, and L
reference frames. Then the velocity v” of the above considered particle in
this reference frame L is

v'=v,t 0 (3)

so that the initial (and conserved in time) momentum p) and energy Ej are
given in L by

4 ’ I 7 MU,Z
py=p(T)=Mo'.  Ej=E(1)=— (4)

where p’(t) and E’(r) are momentum and energy at a “proper-time”
moment 7. The initial position x; and time ¢ at a moment 7 =0 are

Xy =xqF vl (5a)
15=1, (5b)

so that the trajectory in phase space of a particle parametrized by 7 1s given
in an arbitrary reference frame L’ by (4) and

’ ’

P

x'(r)y=xy+ pﬁﬂrzxo+ vty + Sl (6a)
t(r)y=ty+r=t,+7 (6b)

Let us suppose now that there exist scales for all dimensional quantities
entering in (4) and (6). We can choose three independent elementary scales:
elementary scale of mass g, elementary scale for position a, and elementary
scale for velocity c.
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Then the scales for momentum p, and energy p, can be written
correspondingly as

(&
t, = e, uE:;M (7)

e (®)

We can now turn to the procedure for discretization of the description of
the evolution of the free particle in classical one-dimensional nonrelativistic
case. For this purpose we suppose that all physical quantities considered
above characterizing the free-particle motion can take only admissible
values which can be written as products of corresponding elementary scales
and integer numbers (we write a caret on top of the corresponding letters
standing for these integers).

First of all we rewrite in this way the mass of the particle M, the
velocity ¥, of the particle, the velocity of the Galilean transformation V.
and the initial position of the particle x:

M = pm (9a)
C _i‘_\

VO—EAO. V= ’ﬁ/\ (9b)

x=ax (9¢)

Then we have that
c - - ¢ -
= —(k =—k' |

v m(ko+k) ok (10a)

P’:‘up/\’:' (IOb)

E=p i (10¢)

v(r)=aio+7) (10d)

X(1)=a(%+kty+ k') (10e)

are also represented in “admissible” way that is, as a product of correspond-
ing scales and integer numbers.
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Let us note that we have considered up to now only the case of
one-dimensional classical Galilean motion of a free particle. In this case all
elementary scales stay unchanged under the action of Galilean transforma-
tions. As we shall see this is not the case when two-dimensional Lorentz
transformations are considered.

3. TWO-DIMENSIONAL LORENTZ TRANSFORMATIONS
ON THE LATTICE

Our main goal will be now the generalization of the simple results of
the previous section to the case of relativistic free-particle motion. We
suppose that as in the classical nonrelativistic case we can limit ourselves to
the discrete values of corresponding physical quantities describing a free-
particle motion by the introduction of independent elementary scales and
representing all physical quantities by products of corresponding scales by
integer numbers. As before we distinguish the integer-valued quantities by
carets on top of the corresponding letters.

But now we cannot guarantee that these scale factors stay invariant
under the Lorentz transformations. In fact as we shall see the action of
Lorentz transformations on the momentum and position vectors written as
products of corresponding scales and integer numbers, factorizes into action
on the scales and on these integers.

As for the Lorentz transformations that we admit, they are selected
from the Lorentz group transformations by a procedure we are going to
discuss now. The way we introduce what we shall call “admissible transfor-
mations” also makes clear the decomposition of kinematical physical quan-
tities of the free particle into products of scales and integers.

Let us suppose now that we are given in some Lorentz frame of
reference two-dimensional momentum ( p,. p,) of the particles moving
relative to this frame L, so that

Py =ppg. Pi=up, (11)

where >0 is some scale parameter having the dimension of momentum,
common for p, and p, decompositions and j, and p, some integer dimen-
sionless numbers such that p,>|p,|. po>0. We suppose first that also
pr=0.

The transformation of the momentum in the two-dimensional case is
given by

_ potBp ,_ Pt Bp (B_V)
2 1 1/2 -
(1-8%)"" (1-8%)"

(12)

0
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which can be written taking into account (11) as

- 1-8 I/ll}()"’ﬁﬁl )
p(J"p'(]_FB) 1—18 (]3‘1)
r_ 1_.8 |/2ﬁ|+ﬁﬁo

pl—#(HB) 3 (13b)

Let us suppose now that in the new frame of reference L the momen-
tum p, can be written as

P():FL(PA(')E#/(I}()‘*'/"U) (14a)
pi=wpi=w (5 + k) (14b)
where p” is the new scale parameter corresponding to the new Lorentz frame

and L and k. k, are positive integer numbers.
Let us suppose that

PotBPL _ . |
OI_BI:P0+k() (16a)
by tBby .
'I_Bp02p1+k| (16b)
From (16a) it follows that
k
B=—r— (17a)
Pot Btk
and from (16b) that
k
f=—"T1—+ (17b)
Pot P Tk,

We can satisfy (17) if we suppose that

ko=k, =k (18)
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So that in the new Lorentz frame L. moving with velocity V, = 8,C relative
to the fixed Lorentz frame L. such that

k

Bi=——F—=<I (19)
bt Ptk
the momentum is given by
Po=ppy=p(pot+k) (20a)
pi=Ewpi=w(p+k) (20b)

and the momentum scale factor is given by

1— 8. /2
AN @

where £ is an arbitrary positive integer number.

Note that admissible 8, <1 can take only discrete values [see (19)] and
in the case of sufficiently small u(p — 0) such that p, + p, is very large B,
falls almost on the continuum.

The transformations

_ Pyt Bp,

P~ =g (22a)
+
pi= LR (220)

form a group with a usual relativistic law of velocity composition.

Indeed the composition of any two such transformations (22) leads, as
it is easy to see, to the transformation of the same kind with the usual
relativistic law of the velocity composition

g, =Lbith (23)
1+ BB,

and in this set of transformations there exists a unit transformation corre-

sponding to #=0 and for any transformation characterized by B there

exists an opposite transformation with 8= — . It is easy to see also that
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the transformations
1 _ B 1,2
p = ( 1—+B‘) 1 (24)

also forms a group with the same relativistic velocity addition law (23) as
before.
Indeed we have that [see (15)] from

o I_Bl 1,2 L I—Bz 12 (
S e A e A =)
follows that
1—B 1,2
[ X p— Il
g _(1+B.z) : (26)

where f,, is given by (23). and the unit and opposite elements are given as
in the previous case.

The transformation from one admissible Lorentz frame L, that is, one
in which the momentum can be written in the form (11), to some other L
where momentum is given by (14), is characterized by admissible relative
velocity v = 8, C, where

Kk
Bo,= — (= (27)
Pot Ptk

™ |2

Then the admissible Lorentz transformation from the Lorentz frame L’ to
some admissible Lorentz frame L’ is characterized by 8, such that [see

(14)]

k
Bi.= 2 =
1

K,
g L (28)
potpitky  pot Ptk Tk,

Since this transformation is parametrized by 8, which is dependent on the
parameter K, characterizing the previous transformation from L, to L’ we
conclude that the second admissible transformation in the composition of
two admissible transformations depends on the previous one. This means
that the composition of any two admissible transformations is not neces-
sarily itself an admissible transformation. This in turn means that the set
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of admissible transformations which is a subset of the group of all transfor-
mations (22) does not itself form a group.

But the composition of a ““chain™ type characterized by 8, and B, [see
(27) and (28)] (where B, depends on the previous transformation parameter
k) is once again an admissible transformation characterized by ,8,\,1,\,2 where
[because of (23)]

— ‘B"'I+Bk1 — k|2 (29)
ks l+'Bk|'Bk: PAo+pA1+/‘:12
so that
o=k 4k, (30)

We have been dealing up to now with the set of admissible [compatible
with equation (19)] Lorentz transformations leaving invariant the positive
sign of the spacelike component of the momentum. This means that in all
admissible frames of reference considered until now the movement of the
particle takes place in the positive x direction. Yet we can consider the
systems of reference possessing negative relative velocities 8_,, which can
be written in the form

—k
B S— 31
b * byt pi—k ( )
To clarify this point we note that in an arbitrary admissible Lorentz frame
considered until now we have that

150:';"*“/50* pr=ky (32)

where 1 corresponds to the mass of the particle. We suppose that the scale
parameter in the system of rest of the particle is u, then

M=p,m (33)

where M is the mass of the particle.

Then the admissible transformations to the Lorentz frames moving
forward relative to the fixed frame characterized by the integer number I\TO
[see (32)] must possess negative velocity 8 equal to

k
B=——"—""T"——=="~ — (34)
Dot PL—k m+2k —k

where k < kyk,>0.
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Note that transformation with 8 equal to

ko
=- - 35
A m+ kg, (33)

corresponds to the transformation to the system of rest of the particle when
po=m+ky—ko=m. p,=ky—ky=0 (36)

Now let us look for the set of Lorentz transformations leaving invariant the
decomposition of the particle momentum

Po = M1Pg. PL= P, (37)

where p, >0 and p, <0, so that in all admissible Lorentz frames of this set
the movement of the particle takes place along the negative x direction of
these Lorentz frames.

For this purpose let us rewrite the usual Lorentz transformation (12) in
the following form [compare with (13)]:

(1B Bt Bp,
o (14BN p B
pl ) PR (50

If we now suppose that after the transformation the new scale parameter p’
1s equal to

148\

w={125] n (39)
and that

po=w(po+K) (40a)

pi=w(p—k) (40b)
we come to the admissible velocity parameter 8, equal to

k k
Bi=—7 (41)

Po_p|+1€ ﬁ0+|ﬁl|+E

where k is an arbitrary positive integer number.
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As before it it easy to see that the “chain type” composition analogous
to (27). (28) of two admissible transformations of the type now considered
also leads to a transformation of this type with the usual relativistic velocity
addition law.

Note that for positive integer K, B, given by (41) is negative. But
transformations with positive 8, corresponding to the negative integer K,
also belong to this set. The only restriction for the positive 8 is that it must
not be too big so that the corresponding transformation leads to the
consideration of the admissible Lorentz frame with respect to which the
movement of the particle still takes place in the negative x direction.

To specify this point let us suppose that in some fixed admissible
Lorentz frame of the set we are discussing now the momentum of the
particle is ( py, p,). If p is the scale of the momentum in this frame then we
can write that

i+ ko) = ppy (42a)
Plz_l-‘/‘:ozﬂﬁl (42b)

where 1 1s the same as in (33).

From this fixed frame we can transform to the set of admissible
Lorentz frames of reference, characterizing by the relative velocity parame-
ter B,. where

k
Bi=——"—— (43)
¢ Po— D1tk
Taking into account (42) we have that
k
== 44
B=—0% 2o+ k (44)

Then the maximum positive relative velocity given by (44), corresponding to
the negative k equal to — k corresponds to the transition to the system of
rest of the particle. The case when

—k,<k=0 (45)

corresponds to the transition from the fixed admissible Lorentz frame from
the set now considered to the others from the same set moving with respect
to this system in the negative x direction, but with respect to which the
movement of the particle also takes place in the negative x direction. Note
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that there is no restriction for the positive values of the integer £ entering
into (44) and that

—~1<B, <0 (46)
for

O<I€<oo

Let us compare now the two possible sets of transformations consid-
ered above. As we have chosen the positive x direction in an arbitrary way
let us check if there is a correspondence between the admissible movement
of the particle in the positive x direction, described by the first set, and the
description of the particle’s admissible movement in the negative x direction
given by the second set.

It is easy to see that if the free particle possesses the admissible
momentum p, given by

Po:#('ﬁ+l$0)v Py = kg (47)
then the momentum p;

po=w(m+ky).  pi=—uk, (48)
corresponding to the particle moving with the same velocity but in the

opposite direction is also admissible and that in both cases the scale
parameter p entering in (47) and (48) and equal [see (24) and (39)]

= )

is the same. Here in (45) B is the velocity of the particle and p, is the scale
parameter in the system of rest of the particle, the same as in (33).

The admissible values of the velocity parameter of the particle entering
in (49) are

B=x—~ (50)

S mtk
where K is an arbitrary positive integer number and 1 is the same as in (33).

At the end if we compare (19) and (41) giving up to a sign the same
values for the admissible relative velocity parameters of Lorentz frames with
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respect to the fixed frames where the particle is characterized by the
momentum ( p,, p,) and ( py, — p,), we come to the conclusion that there is
a full correspondence of the description of the particle’s movement in the
positive x direction given by the first set and its movement in the negative x
direction described by the second set.

There exists one special Lorentz frame which can be singled out—the
system of rest of the particle which is an admissible Lorentz frame for both
of the above discussed sets. This fact makes it possible to join two sets
considered above into one single joint set describing the movement of the
free particle in both x directions. The admissible relative velocity can be
given now in general as a relativistic sum of two admissible velocities
corresponding to the same or to two different sets considered above—one
of these velocities corresponds to the transition to the system of rest of the
particle while the other corresponds to the transition from the system of rest
of the particle to the new admissible frame of reference from the same or
different set of admissible transformations.

Let us mention also that, as follows from (32) and (42), the following
expression

Bo—| D= m (51)

stays invariant under the transformations from the joint set.

So we can conclude that the same way as two-dimensional Lorentz
transformations leave invariant the mass shell given by a hyperbola, in the
case of integers parametrizing possible values of admissible momentum they
lie on the “cone” plotted in Figure 1.

Let us suppose now that along with the momentum of the particle
( pog» P,), Where

Po=kPy,  PI=MD (52)

given in some admissible Lorentz frame we are given also the position of the
particle (x,, x,) in the same frame. And let us assume that it can be written
in the following form:

xo=a( Podo + $141) (53a)
x,=a( pod, + P1do) (53b)
The parameter a entering into (53) is the scale parameter having the

dimension of length specific to the Lorentz frame considered and g, g, are
arbitrary dimensionless integer numbers.
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upP—————— ——

o

Fig. 1. The “cone™ of admissible momentum, replacing the usual mass shell.

We are going to show that the decomposition of the position and time
variables into some scale parameter multiplied by integer numbers given by
(53) stays invariant under the admissible transformations from the “joint™
set of all admissible transformations.

Let us suppose first of all that p,=0. Then the admissible relative
velocities characterizing the transformations to the possible Lorentz frames
in respect to which the movement of the particle takes place in the positive x
direction are given by

(54)

where k 1s an integer and
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In the new admissible frame of reference after the transformation
characterized by 8, the momentum is

=wpy=pw(py+k) (55a)
Py = =k (55b)

As to the position transformation given by

. Xo * Bixy ,_ X T Bixg
xp =KoL = ARl (56)

(1-872)"" (1-82)"

we can rewrite it in the following form using (53):

=B \V[{ 5 5 . P
X :a( 1+’22 ) [( poltﬁé;p‘ )‘?o-i-(—'—_plltlzfo )Ql} (57a)

=B\ [ 5 B 5 — B p
o) o] om

But [see (16)]

PotBuby _ o s Ly
01—1; t= o= potk (58a)
k
+B,.p -
Putlibos = p +k (58)
k

So if we suppose now that the position scale parameter in new admissible
frame is given by

1/2
a':(i;§2)/a (59)
from (57) and (58) we have that
xo=a'( Podo + P14,) (60a)
xi=a'( pogy + P1do) (60b)

The case when p, <0 can be treated analogously. Indeed if we are given
admissible momentum ( p,, p,) and position (x,.x,) of the free particle
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moving in the negative x direction ( p, <0) then the admissible transforma-
tions are characterized by relative velocity parameter 8,

k Kk
:Bk:_A X == T R ~ (61)
Po— Ptk Pot| Btk

where k is an integer and
—|pi<k<oo (62)

If we suppose now that as before momentum and position of the
particle in some Lorentz frame can be written as

Po= 1 Po (63a)
Py= 1P (63b)
xoza(ﬁ0é0+ﬁ,é|) (63c)
xy=a( pody + P1do) (63d)

then after the admissible transformation characterized by 8, given by (61)
momentum is given by

Py=wps=w(po+ k) (64a)
P=wpi=w(p—k) (64b)
where
1+ 8, ) 2
'= 65
w=( 1) (65)
The transformation of the position given by (56) can be rewritten now
as [see (63), (64)]
1+ B, PotBib) . Pt Bibo ),
, E L L Y
el (B o (B

:a’[(ﬁ0+/€)‘?0+(ﬁ|_k)‘71

|
]
(ﬁo+ka| )
o] =

1+8,\'? 5.+ B, Py ) .
=of 7 (AT o (o] e
:a,[(ﬁ0+E)41+(ﬁl_E) a'( Bod, + £140) (66b)
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where

1+8.\"? 1—18,|\"?
S i

So we see that the two special cases considered allow us to take the
joint set discussed above as the set of ail possible admissible transforma-
tions of momentum and position vectors of the free relativistic particle
leaving invariant the decomposition given by (52) and (53).

Let us note that the scale parameter a corresponding to the movements
of a particle with the same admissible velocities in opposite x directions, is
the same and equal to

=B\ A
e e S

We mention also that the time and position of the particle in all
admissible Lorentz frames given by (53) are characterized by the same
integer numbers g, and q,. If we make now the transformation to the system
of rest of the particle then from (60) and (36) we have that

Xg = agdo (69a)
x) = agmg, (69b)

which means that §, parametrizes the time and ¢, the position of the
particle in its rest frame. Note also that

Po—|Pil=m (70a)

E_Fo (70b)
a a,

and integers g, and §, are invariants of the transformation from the joint
set.

4. DISCRETIZATION OF RELATIVISTIC GALILEAN
FREE-PARTICLE MOTION

We suppose that in some Lorentz frame L is given an initial phase-space
point ( pC, pY, x3, x?) corresponding to the initial momentum and position
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of a free relativistic particle taken at a momentum 7 =0 of proper time 7
parametnzing the evolution of the particle.

Then the position of the particle in four-dimensional phase space at an
arbitrary moment 7, corresponding to the Lorentz reference frame L, is
given by ( po(7), p( 7). xo(7), x,(7)) where [compared with (2)]

p(t)=p) (71a)

Q
. _ 0 Fr
x,(1)=x; + T (71b)
If we consider now an arbitrary Lorentz reference frame L moving with
a velocity v = 8,C relative to L, then in this reference frame the initial
phase-space position is ( p,, x,) where

Po=" 2 (72a)
(1-87)
0 0
,_ P tBp
pi=——"0 (72b)
(1-82)
and
.0+ ‘ .0
<= St A (120)
(1-87)
',0+ 3 0
x?’:\l——lji% (72d)
(1-82)

So that the trajectory in phase space parametrized by 7 is given in the
arbitrary Lorentz frame L by

po(7)= pg (73a)
pi(r)=p) (73b)

: 2+ 8, x? ‘
x6(7)2x8'+%72————80 B’fk),;ﬁ% (73¢)
Pk

’ 0 0 ’
x, +B8.x
xi(r)=x0+ = L TR0 Pxo 1L

EATE R "

[compare with (5) and (6)].
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We suppose now that the Lorentz frame L, is an admissible one, so
that the initial momentum ( pJ, p{) and position (xJ, x?) of the particle can
be written as

ps=u[ B8(m+ ko) + ko) =y (74a)
Py =u[ B0+ ko) + Kopg] =up, (74b)
x3 = a[go(m + ko) + k‘oql]quo (74c)
x?=a §,(m+ ko) + Goko| = a%, (74d)

The mass of the particle M can be written as

M = porh (75)
and evolution-invariant parameter r proper time as [see (69a))

T=agmT (76)

Then the evolution in phase space in admissible Lorentz frame L is
given by [see (71)]

p(T)=up, (77a)

and

Ea[(rh+/€0)c§0('r)+ /EO(?[('?)] (77b)

Ea[(’i’+’$o)‘?1(f)+leo@0(’f)] (77¢)
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because [see (70b)]

m
—a,= 78
‘uoao a (78)

From (77) follows that the evolution of the particle is taking place along
admissible positions in phase space and that

Go(#)=Go + pot (79a)
‘71(7)241+ﬁ?f (79b)

The evolution of the particle in an arbitrary Lorentz frame L given by
(73) in the case when L is an admissible one is given by

po(mY=wps = w] p3Cm + K )+ pIk] (80a)
pur)=pp=w [ A+ k) + poK] (80b)
xg(1)=a’'[ podo(#)+ §14:(7)] (80c)
xi(7)=a'[ g, (#)+ p1dol#)] (80d)

where §,(7) is given by (79).

From (80) it follows that for each admissible moment of proper time 7
characterized by an integer 7, in all admissible Lorentz frames the particle
occupies the admissible position.

In the nonrelativistic limit of small Bk(k: < ity we have that

po=L=s (81)
l‘k:[l_£+%(%)ﬁ}#o (82)

so that nonrelativistic energy £ momentum p, position x, and time ¢ are
given by

E=p,—MC*=p(K'), k'=ko+p? (83a)
p=p,K (83b)
x=a(g,+kogo+k'7) (83c)
t=a,(gy+7) (83d)

in complete analogy with the classical case considered in Section 2.
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5. DISCRETIZATION OF THE ROTATIONS

Keeping in mind the further generalization of the discretization proce-
dure of free-particle kinematics to the case of 3+ 1 dimensions we consider
the discretization of pure rotations which are subgroups of both nonrelativ-
istic and relativistic free-particle kinematical groups. As we shall see one can
put forward the discretization procedure for the case of admissible rotations
which form a compact set in complete analogy to the discretization proce-
dure which results in choosing a noncompact set of admissible Minkovsky
non-Eucledian rotations considered above.

As previously we consider initially the discretization procedure of the
momentum of the particle.

So let us suppose that the moment of the particle is along the x, axis
and is equal to

Py = pii (84)

Then after rotation by the angle § <7 /2 in the x,x, plane we obtain
that

py=p,cosf = pmcosf (85a)

p5=psinf = pmsing (85b)

Let us rewrite this in the form

1+ a m
—#(1‘*‘(12)[/2( 1+a) (863)

, 1+« am
pz_”(1+a2)1/2(l+a)’ a>0 (86b)

where a =tan#. In full analogy with the procedure of Section 3 we consider
the factor

l1+a
p—r
(1+a2)"?

(87)

as a new scale obtained after rotation.
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The discretization procedure can be introduced in a natural way if we
suppose that the admissible rotations obey the following conditions:

H_()(Zm-—k2 (88a)
ma -
T a =k, (88b)
so that
k
a = —2 (89)
m~—k,

which we can compared with (56).
From (85)-(88) it follows that after rotation by an admissible angle, p,
and p, components of the momentum can be written in the following form:
P\ = polrn = Ky) = po P (90a)

Py =pok = pgph (90b)

that is as products of a scale factor and integers.
Let us mention that a=tanf, (0<8<x/2) is taking all admissible
values if the integer k, is taking # admissible values

0<k,<m (91)
and that

b+ py=rh 92)
is an invariant of the discrete admissible rotations in this case.

The other cases can be treated similarly (see Appendix). So we can
conclude that there exist 471 admissible rotation angles and correspondingly
4 admissible directions of the momentum vector. This is illustrated in
Figure 2.

In the same way rotations of the momentum vector leave invariant the
quadratic form

pitpy=ppm’ (93)

so that they all lie on the circle, the transformation of the integers p leave
invariant the form

| B\l +] By =1 (94)

so that their end points lie on the square (see Figure 2).
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Fig. 2. The 4s# admissible rotation angles and 4 admissible directions of the momentum
vector.

Let us suppose now that in the system of reference where the momen-
tum of the particle is along the x, axis direction and is equal as before to
p, = uri1, the position of the particle is given by

X, = amj 95a)
1 1
X, = amg, (95b)

where §, and §, are arbitrary integer numbers. Then the admissible rota-
tions lead to the transformation

x| =x,cos8 + x,siné (96a)
x4 = x,c088 — x,sinf (96b)

which can be written also as

, 1+« mo. ma ,\ _ s a PR
xl—a(l+a2)l/2(1+aq|+1+a42)—ao(qun+quz) (97a)
I+ a n“1 mao
)= 3, — 3 ) = ay( 14, — Bra 7b
X} a(1+a2)|/2(1+aq2 Haql) ag( 39, — P>dy)  (97b)
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So we see that admissible rotations of the position of the particle given by
(97) lead to the positions for which the coordinates are of the admissible
type products of the scale factors and integers.

6. LORENTZ 0(3,1) GROUP ON THE LATTICE

Now. after the considerations of the discretization procedures of the
main elements of the Lorentz group— two-dimensional Lorentz boosts and
two-dimensional rotations—we can turn to the general case and consider
the discretization procedure of the Lorentz group O(3.1).

The timelike momentum vector can be written in general as

Py = Mcoshw {98a)
p, = Msinwcos¥d (98b)
p, = Msinhwsin@cos ¢ 98c)
Py = Msinhwsinfsing (98d)

where M is the mass of the particle.

We suppose that M =p,r?, where p, is a scale parameter with
dimension of mass and 1 is an integral dimensionless number.

We suppose now that the boost parameter w and rotation angles ¢ and
¢ are admissible [see (50) and (89)] so that

k,
tanhw, = -—— (99a)
omt ok,
tanf £, t £ (99b)
anf, = o ang, = -
. m—k, s W —ky

in the case when 0<w <co and 0<4, ¢ <7/2 and analogous formulas for
different values of (w. 8, ¢).
Then it easy to verify that

Po = to o= ol + Kk )i? (100a)
P = by =mk (m—ky)m {100b)
Pr=pyPr =R, All‘Az(’h_k}) (100c)

Py = By Py = sk KoKy (100d)
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where
po=py(w ) (101a)
m=pov(6y,) (101b)
pa =y = i Y(@y,) (101c)
and
1 —tanhw,
Y(w,,)= ' (102a)

(l—tanhzwkl)l/2

1+tanf,,
Y(0,)=———37; (102b)

(1+tan26k2)

1+tang,
Y(9x,)= 0z (102c)

(1 +tan2cpk3)

[t is easy to see that the following expression
ﬁo—[ﬁ1|_lﬁ2|_|ﬁ3|:'ﬁ3 (103)

is the invariant of transformation (100).

Let us mention that when p — 0, then 7t —» co and from (99) follows that
all parameters w, , 0, , ¢, fall into continuum in this limt.

We suppose now that in the system of rest of the particle when

=(M, 0) the initial four-dimensional position is given by the vector
Q0 = (ar’§,, am’q), where a is the scale parameter of coordinates in the
system of rest of the particle and g, some arbitrary integers. Then the
transformation from the system of rest of the particle to some admissible
Lorentz system where the momentum of the particle is given by (100) is
accompanied by the transformation of the coordinates of the particle of the
following form:

Qo= Q3 Ny (PQO) (104a)
Q:Q”% :—3%+Q8] (104b)
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where p, is given by (100). the coordinate Q_ is equal to

0= i’ (105)
and the mass M is equal to

M= (106)
So, we see that in the admissible system both the momentum of the particle
and its position are completely determined by two state factors—g and a —

and eight integers (ri1. k. k,. k3. 47).
It is easy to see after rewriting (104) in the following form

0o =al( pegd + pd’) (107a)

P P3 ~0
170+Mq3

9+

H+ 53
P P3)Ao+ PPy . (107b)

: Po+Mq

2 2
: A pitp 25 o]
sza[pzq<?+po+Mq?+(po—p'H‘j §+pp+jwq§’ (107¢)
0 0

L

A0+
Psdo ™ p MmN T p M2 pot+ M

, EAAIN
plp3 (?0_'_ p-p3 q"o.+_(p0——pl_p—")q:?J (]07d)

that if the spatial part of the vector of the momentum is along one axis we
recover the two-dimensional case (60) considered above.

Let us mention also that the relativistic Galilean evolution of the
particle parametrized by proper time parameter 7 in the arbitrary admussible
Lorentz frame is given by

m
x#(T)zQ“+%T, where 7 = ari’+ (108)

so that taking into account (104) we have that this evolution is described by
(104) where now we must consider the position variable QJ depending on 7:

Qo(7)=am’(go +7) (109)

Note that Q, is 7 independent.
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APPENDIX
Let us consider now three other regions of change of the rotation
angles:
(a) —7/2<6<0
Then
= 11—« = 1+|a| u
0— - o
(I-H)zz)l/2 (1+012)|/~
ky
a= —, O<k,<m
m—k,
Lo m s
= 1—a =m _kZ
., Ma .
PRET T, " — ks
so that

is an invariant of the transformation in this case.

(b) m/2<f<m

1y = 11—« w= 1+|ll|

= -
(1+a2)'?  (1+a2)?

Kk .

a=——2=-<0, O0<k,<m
m—k,
ma -

4 T l—a ks

L _oom s

= =m—k,

(A.6)

(A7)

(A.8)

(A.9)
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so that
Py = p By =m

is an invariant of the transformation.

(c) ~r<f<—7/2
by = 1+ a "
g = ————
(1+a2)"?
3 o
a= =— =0 6<k,<m
m—k, -
m . -
pl —1+a—_(m_/‘2)
o ma — 7
P2 T T ks
so that
| P11+ B3| =

is invariant of the transformation in this case.

Arshansky

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)



